Прибор для измерения сопротивления контура заземления


Обзор приборов для измерения сопротивления контура заземления

Заземляющий контур является основным и неотъемлемым устройством защиты человека от удара током, во время выхода электроприбора из строя или пробоя изоляции. Для того чтобы контролировать состояние заземлителя, необходимо проводить периодические замеры, поскольку металлические части в земле подвержены коррозии. При разрушении металлических частей сопротивление контура падает и он прекращает выполнять свою защитную функцию. В данной статье мы рассмотрим приборы для измерения сопротивления заземления.

Обзор приборов

Измеритель Ф4103-М1 делает проверку контура любых геометрических форм и размеров. Внешний вид устройства показан на фото:

Технические характеристики указаны в таблице:

Следующий в нашем обзоре — измеритель непосредственного отсчета определения активного сопротивления М416. Прибор проверенный временем, обладает высокой точностью и стабильностью. Вот так он выглядит:

Основные технические данные:

Проведение измерительных работ с помощью м416 показано на видео:

Современный микропроцессорный измерительный прибор ИС-10 следующий в нашем обзоре. ЖК дисплей, автоматический диапазон измерений, встроенная память последних сорока замеров. Ударопрочный корпус с защитой IP42. Ознакомится с внешним видом можно на фото ниже:

Аппарат предназначен для замеров и тестирования элементов заземления двух-, трех-, четырехпроводным методом. Также с его помощью может быть выполнена проверка качества соединения проводников шины заземления и т.д.

Инструкция по эксплуатации более усовершенствованного измерителя ИС-20/1 демонстрируется на видео:

Ну и завершает наш список приборов для измерения сопротивления контура заземления — профессиональный аппарат MRU-101. Устройство может измерять удельное сопротивление грунта, подстраиваться под конкретную задачу, с помощью анализа и сбора данных. MRU-101 имеет память на последние четыреста замеров. Внешний вид измерителя:

Основные технические характеристики данного устройства:

Видеообзор MRU-101:

Принцип работы измерителей

Измерение сопротивления грунта происходит по классическому закону Ома (R=U/I). Источник напряжения в устройстве подает разность потенциалов на электроды и происходит замер тока через прибор. Получив данные измеритель производит вычисление и выводит результат. На схеме ниже представлена схема замера:

Большинство измерений происходит по этому методу или близкие к данному принципу. Следуя инструкции к имеющемуся у вас в наличии прибору нужно установить измерительные электроды разнося их от основного заземления.

Работы производят в течении пару минут, за это время показания устанавливаются. Данную процедуру производят для каждого заземлителя отдельно. Более подробно узнать о том, как проводят замеры сопротивления заземляющего устройства, вы можете из нашей статьи.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проводятся измерения одним из рассматриваемых нами аппаратом — Ф4103-М1:

Вот мы и рассмотрели основные приборы для измерения сопротивления заземления. Надеемся, предоставленная информация была для вас полезной!

Рекомендуем также прочитать:

samelectrik.ru

Измерители сопротивления заземления

От состояния общего контура заземления здания, сооружения или других объектов с действующими электроустановками зависит не только безопасность обслуживающего персонала и проживающих людей в жилых помещениях. Исправное состояние отдельных элементов системы заземления: общего контура, соединительных шин, проводов заземляющих корпуса электрооборудования и других составляющих, обеспечивает стабильную безаварийную работу электроустановок.

Металлические элементы контура заземления, особенно находящиеся под грунтом, подвергаются коррозии, конструкция постепенно разрушается и перестает выполнять свои функции по защите, оборудования и обслуживающего персонала. Поэтому требуется периодический контроль состояния системы заземления. Методика проверки последовательно описана в требованиях ПУЭ (Правила устройства электроустановок) Одним из важнейших параметров системы является сопротивление контура, для его измерения существует отработанная методика и специальные измерительные приборы.

Читайте также статью ⇒ Заземление и зануление: назначение, отличие, особенности

Принцип действия заземления

Металлические корпуса оборудования на производственных предприятиях и бытовые приборы в жилых помещениях, по требованиям ПУЭ и других нормативных актов, руководящих документов подлежат заземлению. Эта мера обеспечивает безопасность потребителей электроэнергии, пользователей бытовыми приборами и обслуживающий персонал электрооборудования.

Работает это следующим образом, при возникновении замыкания токопроводящей части фазного провода с элементами корпуса происходит выравнивание потенциалов всех замкнутых элементов. Напряжение между корпусом, фазой и заземляющим контуром становится одинаковым. Следовательно, нет разницы потенциалов между землей и полом в помещении. При прикосновении к корпусу оборудования ток не будет переткать с корпуса через человеческое тело в пол или другое оборудование, таким образом, исключается поражение электрическим током.

Основные требования к сопротивлению контура заземления на различных объектах

Одним из важнейших параметров системы заземления является сопротивление контура, контрольные измерения которого производится не реже чем один раз в год, после окончания монтажных работ. В сетях на промышленных объектах, где нейтрали понижающих трансформаторов, генераторов заземляются на общий контур заземления, в однофазных сетях жилого фонда с любыми источниками питания контуры заземления в любое время года с любым составом грунта должны иметь установленную ПУЭ величину сопротивление.

Напряжение в сети электропитания

220- 127

380-220

660-380

Сопротивление с естественными заземлителями (Ом)

60

30

15

Сопротивление контура с повторными заземлителями (Ом)

8

4

2

Для электрических сетей с линейным напряжением 220 – 380В, это сопротивление в пределах 2-8 Ом, для однофазных сетей жилых домов, офисов, административных зданий допускается до 30 Ом. Точные значения для объектов различного назначения определены в ПУЭ и – (Правила технической эксплуатации электроустановок потребителей) ПУЭ в пункте 1.8.39, представлена таблица 1.8.38 и в ПТЭЭМ таблица №36 приложение №3.

Зависимость сопротивления заземления от материалов и грунта

Удельное сопротивление системы заземления в большой степени зависит от состава грунта, наиболее удачными с точки зрения проводимости считаются:

  • Глина – 80 Ом/м;
  • Чернозем – 80 Ом/м;
  • Суглинок – 100 Ом/м.

Песчаные почвы в плане сопротивления не стабильны, влажность сильно расширяет интервал возможных величин 10 – 4000 Ом. Каменистые породы считаются наихудшим вариантом для закладки контура заземления, щебень имеет сопротивление в пределах от 3-5 тысяч Ом/м, цельные гранитные породы до 20000Ом/м.

Состав грунта

Ом/м

Известняк поверхностный

5 050

Гранит

2 000

Базальт

2 000

Песчаник

1 000

Гравий с однородными элементами

800

 Влажный песок

800

Гравий с глиной

300

Чернозёмные грунты

200

Смеси глины песком

150

Глина средней твердости

60

Сланцы с глиной

55

Суглинок пластичный

30

Эластичная глина

20

Водоносные слои под грунтом

5

В чистом виде грунт редко встречается, в большинстве случаев это смешанные виды, поэтому для разных вариантов сделаны расчеты и сведены в справочную таблицу.

Необходимые условия для измерения сопротивления заземления

Независимо от того, какие приборы используются в процессе измерения сопротивления, работающий персонал обязан соблюдать меры безопасности. Используются диэлектрические боты, перчатки и инструменты с изолированными ручками. При сборке элементов схемы измерения провода подключаются, в первую очередь к заземленному вспомогательному электроду, потом к измерительному прибору.

Замеры сопротивления проводятся в период их наибольшего значения это летний и зимний сезоны. При грозе, дожде и большой влажности измерения проводить запрещено. На точность измерений влияет расположение измерительных дополнительных заземлителей к элементам конструкции контура и расстояния между ними. Дополнительные электроды должны располагаться не ближе 10м от вертикальных заземлителей контура, металлических труб водопровода, канализации и других коммуникаций. Забиваются электроды в улежавшийся плотный грунт на глубину более 0,5м. В качестве электродов могут быть использованы естественные заземлители не связанные с контуром, на котором производится измерение.

Совет№1 для точности рекомендуется проводить 2-3 измерения, меняя место расположения измерительных штырей, разница в этих измерениях не должна составлять 5%.

Виды приборов для измерения сопротивления заземления

Производители производят большое количество различных моделей приборов для измерения сопротивления заземляющих конструкций. Все приборы можно разделить на несколько видов:

  • Стрелочные модели с автономными источниками питания в виде малогабаритного генератора, который вращается вручную;
  • Стрелочные с автономными источниками питания на гальванических батареях;
  • Цифровые приборы с жидкокристаллическим дисплеем, питанием от батареек и бесконтактными измерительными клещами.

В каждом виде существует большое количество модификаций, которые имеют свои преимущества и недостатки при определенных условиях эксплуатации. Рассмотрим наиболее популярные модели, которые востребованы у потребителей.

Прибор для измерения сопротивления М-416

Эта модель стрелочного прибора одна из самых старых, которая зарекомендовала себя, простотой в использовании, высокой надежностью и достаточной точностью измерений. Конструкция прибора выполнена по методике исполнения стрелочного омметра с несколькими пределами измерений. Классический вариант подключения прибора для измерения сопротивления заземления, эта схема отображается с внутренней стороны крышки прибора

 Прибор позволяет измерить не только активное сопротивление конструкции контура, но и сопротивление грунта, в котором он установлен. Внешний вид панели управления М-416

Технические характеристики

Пределы измерения Ом

Величины сопротивлений дополнительных измерительных штырей Ом

R1

R2

R3

0,10 – 10,0

0,10 – 10,0

500,0

500,0

0,50 — 50,0

0,50 – 50,0

1000,0

1000,0

2,0 – 200,0

2,0 – 200,0

2500,0

2500,0

10,0 -1000,0

10,0 – 1000,0

5000,0

5000,0

Погрешность при измерении рассчитывается с учетом пределов измерения и сопротивлений измерительных штырей, по формуле:

  • 5 + (N/Rx-1) – плюс минус от измеренного значения;
  • N – наибольшее значение выбранного предела измерений;
  • Rx – измеренное сопротивление контура;
  • Питается прибор от батарей 4,5 В;
  • Общее напряжение на зажимах прибора в разомкнутом состоянии измерительной цепи 13В;
  • Комплекта батарей хватает на 1000 замеров;
  • Весит прибор около 3кг, габариты 24,5x14x17см.

Измеритель сопротивления заземления ИС-10

Это современный цифровой прибор на микропроцессоре с жидкокристаллическим дисплеем, куда в цифровом виде выводятся результаты измерений. Внешний вид измерителя сопротивления ИС -10

Встроенное запоминающее устройство способно фиксировать 40 измеряемых параметров. Корпус выполнен с обрезиненной оболочкой со степенью защиты IP42. Устройство имеет возможность проводить измерения по двух проводной, трех и четырехпроводной схеме.

Бесконтактные клещи позволяют, производить замеры не разрывая цепи на отдельных участках. Элементы комплектации, измерителей сопротивления заземления серии ИС

Измеритель сопротивления заземления СА 6412

Модель позволяет производить измерения сопротивления заземления бесконтактными клещами, не отключая электроустановку. Общий предел измерения 0.1 – 1200 Ом, по току от 1 мА – 30А. Корпус прибора имеет высокую прочность благодаря композитному материалу «Lexan®», составные элементы клещей выполнены двойным слоем стенок. Внутренний диаметр клещей позволяет обхватывать заземляющие проводники Ø-32мм. Пример как производятся замеры

 Основные особенности конструкции:

  • Не требуется вспомогательных электродов и соединительных проводов;
  • При коротком замыкании, когда сопротивление меньше 0.1 Ом срабатывает индикатор;
  • Имеются индикаторы помех в измеряемой цепи и при открытии клещей во время замеров;
  • Индикатор заряда батарей своевременно укажет на низкий уровень зарядки;
  • Прибор обладает функцией самотестирования и удержания измеренных показаний;
  • Опция установки пороговых значений обеспечивает удобные условия измерений при темноте.

Технические Параметры

 Величин Значений

Частота генератора, на которой измеряется сопротивление

2,400 кГц

Частота измеряемого тока

от 45 до 800 Гц

Ток перегрузки

100 А — постоянно 200 А — < 5 секунд

50 / 60 Гц

Диэлектрическая прочность

2500 В

Батарея питания

9 В (типа «Крона») или Ni/Cd аккумуляторы

Ресурс батареи

До 1500 измерений, приблизительно 8 часов непрерывной работы

Интервал рабочих температур

от -11° до + 54° С

Ø захвата бесконтактных клещей

32 мм

Ширина открытого захвата

35 мм

Степень защиты корпуса

IP 30 

Читайте также статью: → «Чем отличается заземление от зануления?».

Измеритель сопротивления заземления–1820 ER

Одна из моделей цифровых приборов с жк дисплеем, пределы измерения 0.01 – 2000Ом, с функцией удержания показаний, питается от батарей. Комплект измерителя сопротивления заземления 1820 ER

Особенности технических характеристик

  • Тестовый ток в режиме измерения сопротивления составляет 2мА, что позволяет производить работы без отключения электроустановки от источника питания.
  • В составе комплектации предусматривается наличие штатных проводов для сборки схемы и измерительных штырей, что значительно повышает точность измерений;
  • Прибор позволяет измерять пошаговое напряжение.
  • 1820 ER пользуется у потребителей хорошим спросом по причине простоты в использовании, малых габаритах и весе примерно 1кг, относительно не большая цена, доступная для частных лиц и организаций 14500Р.

Измеритель сопротивления заземления SEW 2705 ER

Большим спросом пользуется у профессиональных электриков, и имеет малые габариты и удобен в применении, напоминает обычный мультиметр со стрелочной шкалой. Внешний вид прибора

Основные особенности и технические характеристики

  • По двухпроводной схеме измеряет сопротивление заземления до 1000Ом;
  • Более точные измерения делаются по трехпроводной схеме;
  • Шаговое напряжение измеряется до 30В;
  • Тестовый ток в пределах 2мА, что позволяет производить измерения, на работающей электроустановке, без отключения электропитания;
  • Шкала стрелочная разработчики сознательно отказались от цифрового варианта с целью повышения точности в данном интервале измерений.
  • Индикатор уровня зарядки батарей питания.

Пример различных схем для измерения:

А – измерение пошагового напряжения;

В – Точные измерения в трехпроводном режиме;

С – Грубые измерения в двухпроводном режиме.

Существует много методик и схем для измерения сопротивления заземления:

  • Двухпроводная схема;
  • Трехпроводная;
  • Четырехпроводная;
  • Метод пробного электрода;
  • Компенсационный способ и другие.

Все эти методы имеют свои преимущества и недостатки в конкретных случаях с соответствующими приборами, эта тема требует детального рассмотрения в отдельной статье. Комплектация прибора

Совет №2 Измерения рекомендуется делать по той схеме, которые указаны в инструкции по эксплуатации на прибор, эта методика однозначно проверена и протестирована, поэтому измерения будут точнее. На корпусах и крышках некоторых приборов указаны схемы подключения.

Измерения всеми этими приборами осуществляется по классическому принципу, цифровой процессор высчитывает сопротивление по закону Ома R = U\I.

Общая схема для измерения сопротивления контура заземления
  • Не учитываются требования к расстоянию между измерительными штырями и контуром заземления, обычно это 10 м;
  • Измеряя сопротивление контура, забывают измерить сопротивление линии с заземленной нейтралью. Это очень важно, особенно когда присутствуют элементы с повышенной коррозией;
  • Для точности и надежности. Проведите 2-3 измерения с разными местами установки измерительных штырей, особенно сделайте измерения, где большая вероятность разрушения элементов контура от коррозии.

Читайте также статью: → «Методики проверки заземления в розетке, подробное описание способов».

Часто задаваемые вопросы

1.     Вы пишите, что надо делать несколько замеров меняя место положения штырей, а какое измерение принимать за правильное? 

Да, разница между ними не должна превышать 5%, можно принять среднеарифметическую величину, но для надежности у электриков принято за истинное значения принимать самую малую величину сопротивления.

2.      А почему нельзя провести измерения обычным мультиместром?

Для себя можно, но эти измерения будут с очень большими погрешностями и ни одна контролирующая организация их учитывать не будет. Сопротивление заземления должна проводить Электролаборатория один раз в год с составлением протокола.

electric-tolk.ru

Прибор для проверки заземления. Измерение сопротивления заземляющего устройства

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

Сегодня я расскажу Вам, как произвести измерение сопротивления заземления или, если сказать точнее, то заземляющего устройства (ЗУ).

В прошлой статье я Вам подробно рассказывал про на примере жилого многоквартирного дома.

Так вот, после окончания монтажных работ, необходимо проверить качество выполнения этих работ. Доказательством тому является измерение , которое должно быть не больше значений, указанных в нормативно-технической литературе: ПТЭЭП (п.26.4, табл. 35 и табл.36.) и ПУЭ (п.1.7.101 и Глава 1.8, табл.1.8.38).

Но как произвести измерение его сопротивления? Читайте ниже.

Подготовка к работе

Перед началом работ по измерению сопротивления заземляющего устройства по мере возможности и доступности необходимо произвести осмотр видимой его части без вскрытия грунта. При осмотре оценивается состояние контактных соединений, наличие антикоррозийного покрытия и отсутствие обрывов.

Качество сварных швов проверяется простукиванием молотком, а ослабление болтовых соединений — с помощью гаечных ключей.

Также во время осмотра нужно убедиться в том, что монтаж заземляющего устройства, сечения заземлителей и заземляющих проводников, и правильность подключения к ней заземляющего проводника и проводников соответствуют проекту и требованиям ПУЭ.

Почитайте для информации о том, т.е. как правильно перейти от системы заземления TN-C на систему заземления TN-C-S.

Знакомство с прибором М416 и его технические характеристики

Если при визуальном осмотре не выявились какие-либо замечания и нарушения, то можно приступать к проведению замера. Для этого в «парке приборов» имеется переносной электроизмерительный прибор М416, который включен в Госреестр средств измерений РФ под номером 2746-71. Межповерочный интервал (МПИ) у него составляет 1 год.

Данный прибор применяется для замера сопротивления заземления, удельного сопротивления грунта и активного сопротивления. Принцип его работы основан на компенсационном методе измерения с использованием вспомогательного заземлителя и потенциального электрода (зонда).

Технические характеристики измерителя М416:

  • предел измерений от 0,1 до 1000 (Ом)
  • температура эксплуатации от -25°С до +60°С
  • вес около 3 (кг)
  • габаритные размеры 245х140х160 (мм)
  • питание прибора осуществляется с помощью 3 элементов питания размером D (R20 или 373) напряжением 1,5 (В)

У меня даже сохранился «родной» экземпляр батарейки под названием «Элемент» от 1984 года выпуска.

С помощью комплекта элементов питания можно провести не меньше 1000 измерений.

Вот так выглядит лицевая панель измерителя М416, на которой расположены:

  • переключатель диапазонов измерения
  • ручка реохорда
  • кнопка включения прибора
  • выводы (1-2-3-4) для подключения соединительных проводов
  • шкала

Корпус прибора М416 выполнен из пластмассы. Прибор имеет откидную крышку и специальный ремень для переноски.

Для измерений сопротивления ЗУ можно использовать и другие, более современные приборы, но к сожалению, пока в нашей электролаборатории их нет. Как только появится что-то новенькое, то я сразу же напишу о нем статью-обзор — подписывайтесь на новости сайта, чтобы не пропустить интересное.

Когда нужно проводить измерения сопротивления заземляющего устройства?

Чтобы при измерении сопротивления заземления получить достоверные показания, их необходимо проводить в период наибольшего высыхания (летом в сухую погоду) или промерзания грунта (зимой), т.е. при наибольшем удельном сопротивлении грунта (ПТЭЭП, п.2.7.13).

Если замер проводился в другие погодные условия, то в полученный результат необходимо внести поправочный сезонный коэффициент Кс. Об этом я расскажу Вам в отдельной статье — подпишитесь на новости сайта, чтобы не пропустить выход новых статей.

Проведение работ

Порядок проведения работ по измерению сопротивления заземляющего устройства (ЗУ) с помощью измерителя М416.

1. Проверяем наличие, и в случае отсутствия устанавливаем, комплект элементов питания 3х1,5 (В), соблюдая полярность. Отсек питания расположен в нижней части прибора.

2. Устанавливаем прибор М416 на ровной поверхности строго в горизонтальном положении.

3. Производим калибровку прибора. Для этого переключатель диапазонов измерения необходимо поставить в положение «Контроль 5Ω». Затем нажать на красную кнопку и, вращая ручку реохорда, установить стрелку прибора на ноль. На шкале должно быть показание 5±0,3 (Ом). Если так, то продолжаем измерения, если нет, то перепроверяем заряд и полярность элементов питания. Если с ними все нормально, то отдаем прибор в ремонт.

4. Чтобы уменьшить влияние сопротивления соединительных проводов между выводами (1), (2) и Rх на результат измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю.

5. Выбираем необходимую схему подключения прибора.

Для грубых измерений сопротивления ЗУ или относительно больших сопротивлений (больше 5 Ом) выводы (1) и (2) соединяют перемычкой. Измеритель М416 при этом подключают по трехзажимной схеме. При такой схеме в результат измерения входит сопротивление соединяемого провода между Rx и выводом (1).

Если Вам необходимо более точно провести измерение сопротивления заземлителя (ЗУ меньше 5 Ом), то применяют четырехзажимную схему подключения прибора, сняв перемычку между выводами (1) и (2). При такой схеме исключается погрешность от соединительных проводов и контактных соединений.

  • Rх — измеряемое сопротивление заземлителя или заземляющего устройства
  • Rз — зонд (потенциальный электрод)
  • Rв — вспомогательный заземлитель

Для подсказки, четырехзажимная схема подключения указана на крышке прибора.

Для заземлителей, выполненных в виде сложных контуров с протяженными периметрами, применяются аналогичные схемы подключения измерителя М416, только между Rх и Rз должно быть расстояние не менее 5-кратного расстояния между двумя наиболее удаленными заземлителями плюс 20 (м).

Вот пример сложного контура заземления (обозначен на схеме зеленой пунктирной линией) одного из Торгового центра, где мы проводили измерения.

6. Стержни зонда и вспомогательного заземлителя нужно забивать в плотный не насыпной грунт на глубину не меньше, чем на 0,5 (м).

Расстояние между стержнями указаны на приведенных выше схемах.

В качестве Rз и Rв можно применять металлические стержни или трубы диаметром не менее 5 (мм).

Чтобы избежать значительного переходного сопротивления между заземлителем и забитыми стержнями, их необходимо забивать прямыми ударами без раскачивания. Для этого придется «потрудиться» с помощью вот такой кувалды.

В качестве соединительных проводов можно использовать медные провода сечением не менее 1,5 кв.мм.

7. Место соединения проводов к заземлителю необходимо очистить от краски, например, с помощью напильника.

К этому же напильнику с другой его стороны подсоединен медный провод сечением 2,5 кв.мм, т.е. напильник также является и щупом для соединения заземлителя с выводом (1) при трехзажимной схеме подключения прибора М416.

8. После выбора схемы и подключения прибора переходим к измерению. Переключатель диапазонов измерения ставим в положение «х1» (умножение на один). Нажимаем на красную кнопку и, вращая ручку реохорда, устанавливаем стрелку прибора на ноль.

Если сопротивление заземлителя больше 10 (Ом), то переключатель диапазонов необходимо установить в положение «х5», «х20» или «х100».

9. Результат находим путем умножения показания шкалы реохорда на установленное положение переключателя диапазонов «х1», «х5», «х20» или «х100».

В нашем примере переключатель прибора М416 установлен в положении «х1», а значит полученное значение 1,9 нужно умножить на 1, т.е. измеренное сопротивление заземлителя составляет 1,9 (Ом).

10. После завершения работ заносим полученные данные в протокол соответствующей формы.

Периодичность проведения измерений

Периодичность проверки сопротивления заземлителя или контура заземления производится по утвержденному графику предприятия, а также после ремонта или его реконструкции. Более подробно об этом Вы можете почитать в нормативно-технической литературе ПТЭЭП (п.2.7.8. — 2.7.15).

А Вы каким прибором измеряете сопротивление заземления? Хотелось бы услышать реальные отзывы, т.к. планирую в ближайшее время обновить М416 на что-нибудь более современное.

P.S. Если Вы самостоятельно не можете произвести измерения, то воспользуйтесь услугой электролаборатории.

Представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь . Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется . Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

На сегодняшний день измерение сопротивления заземления необходимо выполнять для того, чтобы удостовериться, что оно полностью соответствует всем требованиям ПУЭ, а также ПТЭЭП. Все замеры, которые будут проводиться в электроустановке с глухо заземленной нейтралью (напряжение, которых будет ниже 1000 Вольт) обязательно должны будут соответствовать следующим нормам.

Значение, которые вы получите после выполнения замеров не должно превышать отметку в 8, 4 и 2 Ом при напряжении в 220, 380 и 660 Вольт. Если в электроустановках будет использоваться изолированная нейтраль, тогда сопротивление заземляющего контура будет соответствовать п 1.7.104 ПУЭ и рассчитываться оно будет по формуле Rз * Iз < 50 В. В этой статье мы рассмотрим основные методики замеров контура, а также приборы, которые необходимо для этого использовать.

Обзор методик

Для проведения разнообразных измерительных работ, вам может потребоваться искусственно собрать электрическую цепь, где ток будет течь через испытуемый заземлитель, а также токовый электрод. Также в подобной схеме будет задействоваться потенциальный электрод. Основным его назначением будет считаться замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод обязательно необходимо расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне, где будет располагаться нулевой потенциал.

Чтобы измерить сопротивление методом амперметра-вольтметра, вам необходимо будет воспользоваться законом Ома. Такой метод в большинстве случаев необходимо будет использовать для частного дома. Чтобы получить необходимый измерительный ток вы также можете воспользоваться сварочным трансформатором. Также вы можете использовать и другие трансформаторы, где вторичная обмотка не будет связана с первичной.

Использование специальных приборов

Даже если у вас дома присутствует функциональный мультиметр, то в этом случае необходимо помнить, что он не подойдет для измерения сопротивления контура заземления. Чтобы измерить сопротивление контура заземления своими руками, вам потребуется использовать следующие аналоги:

  • MC-08.
  • M-416.
  • ИСЗ-2016.
  • Ф4103-М1.

Теперь давайте рассмотрим, как измерить сопротивление прибором М-416. Перед тем, как использовать устройство необходимо убедиться, что у него есть питание. Готовый прибор вам необходимо будет поставить на ровную горизонтальную поверхность. Теперь необходимо выполнить калибровку этого прибора. Устройство необходимо поставить в положение «контроль» и удерживать красную кнопку, а значение необходимо перевести в режим «ноль». Для проведения измерений необходимо использовать трехзажимную схему. Вспомогательный стержень необходимо забить не менее чем на полметра в землю. Все провода, вам необходимо подключить по схеме, которая размещена ниже.

Переключатель, который располагается на приборе необходимо будет перевести в положение «Х1». После этого можно будет зажать ручку и крутить стрелку, пока она не станет в положение «ноль». Полученный результат, вам необходимо умножить на ранее полученный множитель. Это и будет ваше искомое значение. На видео ниже вы сможете заметить, как измерить сопротивления заземления прибором.

При необходимости вы также можете использовать современные приборы, которые позволяют значительно упростить всю работу по выполнению замеров. Например, для измерения сопротивления заземления вы можете использовать приборы MRU-MRU200, MRU120, MRU105.

Работа токовыми клещами

Сопротивление контура заземления можно также измерять токовые клещи. Их преимущество будет заключаться в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Благодаря этому у вас появится замечательная возможность оперативно вести процесс измерения. Теперь рассмотрим . Через заземляющий проводник будет протекать переменный ток под воздействием первичной обмотки трансформатора, которая будет находиться в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеряемыми клещами.

Какая должна быть периодичность измерений?

Проводить измерение сопротивления, а также частичную раскопку грунта необходимо регулярно. В большинстве случаев необходимо руководствоваться графиком, который составлен на предприятии или который вы составили самостоятельно. Многие люди, которые проживают в частном доме пренебрегают защитой, но делать этого не следует.

Если вы планируете выполнять проверку, тогда помните, что выполнять подобную задачу лучше всего в сухое время года. Благодаря этому у вас появится замечательная возможность добиться точных результатов. Если выполнение проверки выполнять осенью или весной, тогда помните, что из-за мокрого грунта ток может растекаться и поэтому показания будут неточными.

Чтобы измерение сопротивления заземления проводили специалисты, вам потребуется обратиться в соответствующую компанию. После завершения проверки у вас появится возможность получить протокол, в котором будут указаны все необходимые данные о проведении подобной проверки. Многие лаборатории указывают в этом документе место проведение работ, назначение заземлителя, сезонный поправочный коэффициент. Ниже вы сможете увидеть образец подобного протокола.

Ниже вы также можете увидеть видео, в котором будет рассказано, как измеряют сопротивление заземления опоры ВЛ.

Теперь вы знаете все методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете определенными навыками, тогда в этом случае лучше всего обратиться к настоящим профессионалам.

В данной своей статье я хочу затронуть тему - .

После того, как был произведён монтаж контура заземления, необходимо проверить качество выполненных работ. Для этого и измеряют сопротивление заземления, оно должно соответствовать требованиям нормативно-технических документов.

Давайте немного вспомнить о самом заземлении.

Защитным заземлением называется устройство, предназначенное для обеспечения безопасности от поражения электрическим током, в котором нормально не находящиеся под напряжением металлические элементы электроустановки или части оборудования преднамеренно соединены с землёй.

Принцип действия заземления - оно снижает напряжение между металлическим корпусом электрооборудования, оказавшимся под напряжением, и землей до безопасного значения. Заземляющие устройства после всех монтажных работ испытывают не реже одного раза в год по программе Правил устройства электроустановок. По этой программе производится измерение сопротивления заземляющего устройства.

Сопротивлением заземляющего устройства называется суммарное сопротивление, слагающееся из сопротивления растеканию заземлителя и сопротивления заземляющих проводников.

Сопротивление заземляющего устройства , к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом, соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителями заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измеритель заземления М416 предназначен для замера , активных сопротивлений, а также могут быть использованы для определения удельного сопротивления грунта (ρ). Диапазон измерения прибора - от 0,1 до 1000 Ом. Прибор М416 имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания измерителя служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

levevg.ru

Как выполняется измерение сопротивления заземления

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

U1=I1∙rx.

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

U2=I2∙rаб.

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи! 

electrik.info


Смотрите также

X