Блок питания 10а 24в своими руками


БЛОК ПИТАНИЯ 24В

   Недавно возникла необходимость получить напряжение примерно 24В при токе до 3А. Сначала решил собрать стабилизатор на транзисторах, но как оказалось этот вопрос можно решить ещё проще. В этом мне хорошо помогла микросхема LT1083 предназначенная для установки в стабилизаторы с низким падением напряжения для токов нагрузки вплоть до 7А.

   В микросхеме LT1083 падение напряжения составляет всего 1В, поэтому на ней выделяется тепла меньше, чем на других аналогичных микросхемах серии 78Lхх и трансформатор нужно на меньшее напряжение. Подробнее параметры LT1083, LT1084, LT1085 смотрите в даташите. Схема блока питания на 24В:

   Входное напряжение стабилизатора LT1083 - до 30В. Но лучше не доходить до такого предельного значения и выбрать трансформатор со вторичной обмоткой хотябы на пять вольт меньше. И прежде чем подключать микросхему проверьте, чтоб после диодного моста и конденсатора фильтра было меньше 30-ти вольт. Ведь после выпрямления переменного напряжения в постоянное, оно увеличится на 25%.

   Микросхемы LT1083, LT1084, LT1085 могут выпускаться в разных вариантах корпусов. Ниже приведена цоколёвка выводов для них.

   Трансформатор для такого напряжения и тока, надо на мощность от 100 ватт. Например ТС-160 или из линейки ТАН/ТН. Питание на них подаётся с серединного отвода вторичной обмотки. Для защиты микросхемы LT1083 от бросков тока во время переходных процессов, используется диод IN4002. Точно установить напряжение выхода нужно подстроечным резистором, после чего заменить его на постоянный такого же номинала.

   Готовый БП разместил в корпус из оргстекла с подсветками. Подсветка блока питания выполнена на индикаторной лампе и синих светодиодах. Один выключатель для сети, а вторым - переключается режим 12-24В. Соединение с нагрузкой многожильными проводами, с сечением более 1мм. Материал прислал: Гость.

   Форум по блокам питания

   Обсудить статью БЛОК ПИТАНИЯ 24В

radioskot.ru

Импульсный блок питания 24В 18А

Акопов Роберт UN7RX, arg777 (at) mail.ru http://arcalc.do.am/

Импульсный блок питания рассчитан на выходное напряжение в пределах 20-28В, при максимальном долговременном токе нагрузки 10А без принудительного охлаждения и до 18А при использовании вентилятора. В качестве контроллера используется широко распространенная в промышленных устройствах микросхема UC3825. Ее выбор был обусловлен, прежде всего, наличием. Ну, а раз она является (наряду с 3525) промышленным стандартом, то и не пришлось долго раздумывать. Блок питания представляет собой типовой полумост с оптронной развязкой ОС по напряжению. Защита по току осуществляется с помощью трансформатора тока. К особенностям можно отнести повышенные требования к монтажу и конструкции. Причин тут несколько. Во-первых, примененный контроллер имеет высокую граничную рабочую частоту, управляющие входы контроллера достаточно высокоимпедансные и чувствительны к наводкам. Это обязывает соблюдать некоторые правила монтажа такого контроллера и его обвязки. Во-вторых, специфика применения данного БП предъявляла жесткие требования по различным помехам, как радиочастотным, так и акустическим. Последнее наложило ограничение на разработку конструкции, в частности, на минимизацию габаритов и размещение некоторых компонентов. Часто используемое «компьютерное» расположение силовых элементов и радиаторов было исключено, как и применение комплектующих рассчитанными на эксплуатацию в основном, в режиме обдува, то есть, без заметного запаса по параметрам. Это касается прежде всего размеров сердечников трансформатора и дросселя L1.

Схему БП можно условно разделить на три части. Первая - это входные цепи питания, содержащие противопомеховый фильтр, варистор и узел ограничения броска тока заряда конденсатора фильтра питания, состоящий из резистора R16 и простейшего реле времени на транзисторе VT4. Вторая – узел контроллера, выделенный синим цветов. И третья, силовая, преобразовательная часть, с фильтром на выходе.

В зависимости от требований, используется также плата дополнительных фильтров, если в этом есть необходимость.

Рисунки печатных плат в формате lay можно скачать здесь. На печатных платах детали не промаркированы, но учитывая несложность конструкции, определить их соответствие принципиальной схеме, несложно. Схема собрана на двух печатных платах, основной и субплате контроллера. Так удалось решить проблему с чувствительностью этой микросхемы к различного рода наводкам. Обратите внимание, что субплата контроллера двусторонняя, на одной смонтированы SMD компоненты, а другая сторона в виде сплошной фольги, использована как общий провод и экран.

Конденсатор С6 установлен навесным монтажом, поверх С7.

Данные намоточных компонентов:

Трансформатор Tr1 намотан на сердечнике из феррита N67 размером 26х6х6 и содержит 3х16 витков провода ПЭЛШО 0.35. Tr2 выполнен на таком же феррите, размер сердечника 42х10х20, первичная обмотка выполнена литцендратом из проводов 0.08 и суммарным диаметром скрутки 1мм, с общей шелковой изоляцией и содержит 17 витков. Вторичная обмотка - 2х5 витков медной ленты толщиной 0.4 и шириной 12 мм. Вспомогательная обмотка для питания контроллера содержит 2х3 витка провода ПЭЛШО 0.35 Дроссель L1 на кольце из спеченного мопермаллоя, проницаемостью 63. Размеры кольца 28х15х15, цвет защитного покрытия - желтый, с белым торцом. Число витков - 25. Трансформатор тока использован готовый, первичная обмотка представляет собой пропущенный в отверстие кольца провод МГТФ c диаметром жилы ок. 1.5мм. Вторичка - примерно 150 - 200 витков провода на кольце М16х8х6, проницаемость около 2000. Дроссель L2 готовый, на ферритовом стержне, диаметр провода 2мм. Дросселя внешних фильтров выполнены на ферритовых сердечника с высокой проницаемостью (4000) , при их намотке следует правильно расположить обмотки, чтобы исключить подмагничивание сердечника - для этого каждая полуобмотка мотается на свой половине кольца, а направление намоток должно быть противофазным. Следует отметить, что зачастую, применение тех, или иных деталей, определялось их наличием, а не обязательной необходимостью применять именно этот компонент. При повторении ИБП стоит это учитывать. Обратите внимание на обязательное подключение конденсатора С27 к корпусу радиатора. В противном случае могут возникнуть паразитные колебания. Реле Rel1 любое, на рабочее напряжение 24В и ток через контакты не менее 3А. 

Внешний вид ИБП:

Вид сбоку на монтаж силовых полупроводников:

Вид снизу

Субплата контроллера

Обратите внимание на то, что выходная отрицательная шина питания, заземлена на радиатор при помощи полоски медной фольги шириной 10мм, которая заведена под стойку платы и прижата винтом крепления.

Обсуждение БП здесь.

www.qrz.ru

Схема регулируемого блока питания 0…24 В, 0…3 А, с регулятором тока ограничения.

Схема регулируемого блока питания 0…24 В, 0…3 А,с регулятором тока ограничения.

Схема регулируемого блока питания с регулятором тока ограничения

В статье мы приводим вам не сложную принципиальную схему регулируемого 0 …24 Вольта блока питания. Ограничение тока регулируется переменным резистором R8 в диапазоне 0 … 3 Ампера. При желании этот диапазон можно увеличить путем уменьшения номинала резистора R6. Данный ограничитель тока является защитой блока питания от перегрузок и коротких замыканий на выходе. Величина выходного напряжения задается переменным резистором R3. И так, принципиальная схема:

Принципиальная схема блока питания с регулятором тока

Максимальное напряжение на выходе блока питания зависит от напряжения стабилизации стабилитрона VD5. В схеме применен импортный стабилитрон BZX24, его U стабилизации лежит в диапазоне 22,8…25,2 Вольта согласно описанию.

Стабилитрон bzx-27

Вы можете скачать datashit на все стабилитроны этой линейки (BZX2…BZX39) по прямой ссылке с нашего сайта:

Так же в схеме можно применить отечественный стабилитрон КС527.

Список элементов схемы блока питания:

● R1 - 180 Ом, 0,5 Вт● R2 - 6,8 кОм, 0,5 Вт● R3 - 10 кОм, переменный (6,8…22 кОм)● R4 - 6,8 кОм, 0,5 Вт● R5 - 7,5 кОм, 0,5 Вт● R6 - 0,22 Ом, 5 Вт (0,1…0,5 Ом)● R7 - 20 кОм, 0,5 Вт● R8 - 100 Ом, подстраиваемый (47…330 Ом)● С1, С2 - 1000 х 35V (2200 х 50V)● С3 - 1 х 35V● С4 - 470 х 35V● 100n - керамический (0,01…0,47 мкФ)● F1 - 5 Ампер● Т1 - КТ816, можно поставить импортный BD140● Т2 - BC548, можно поставить BC547● Т3 - КТ815, можно поставить импортный BD139● Т4 - КТ819, можно поставить импортный 2N3055● Т5 - КТ815, можно поставить импортный BD139● VD1…VD4 - КД202, или импортная диодная сборка на ток не менее 6 Ампер● VD5 - BZX24 (BZX27), можно заменить отечественным КС527

● VD6 - АЛ307Б (RED LED)

О выборе конденсаторов.

С1 и С2 стоят параллельно, поэтому их емкости складываются. Номиналы их выбираются из примерного расчета 1000 мкФ на 1 Ампер тока. То есть, если вы захотите поднять максимальный ток БП до 5…6 Ампер, значит номиналы С1 и С2 можно поставить по 2200 мкФ каждая. Рабочее напряжение этих конденсаторов выбирается изи расчета Uвх * 4/3 , то есть, если напряжение на выходе диодного моста составляет порядка 30 Вольт, значит (30*4/3=40) конденсаторы должны быть расчитаны на рабочее напряжение не менее 40 Вольт.Номинал конденсатора С4 выбирается примерно из расчета 200 мкФ на 1 Ампер тока.

Печатная плата блока питания 0…24 В, 0…3 А:

Печатная плата блока питания

О деталях блока питания.

● Трансформатор - должен быть соответствующей мощности, то есть если максимальное напряжение вашего блока питания составляет 24 Вольта, и вы рассчитываете, что ваш БП должен обеспечивать ток порядка 5 Ампер, соответственно (24 * 5 = 120) мощность трансформатора должна быть не менее 120 Ватт. Обычно трансформатор выбирают с небольшим запасом по мощности (от 10 до 50 %) Подробнее о расчете можно прочитать статью:

Простой расчет понижающего трансформатора.

Если вы решили применить в схеме тороидальный трансформатор, его расчет описан в статье:

Как рассчитать тороидальный трансформатор

● Диодный мост - по схеме собран на отдельных четырех диодах КД202, они расчитаны на прямой ток 5 Ампер, параметры в таблице ниже:

КД202_параметры

5 Ампер это максимальный ток для этих диодов, и то установленных на радиаторы, поэтому для тока в 5 и более ампер лучше применять импортные диодные сборки ампер на 10.

Как альтернативу можете рассмотреть 10 Амперные диоды 10А2, 10А4, 10А6, 10А8, 10А10, внешний вид и параметры на картинках ниже:

Диоды 10A10_10A_1000V

10А2_10_parametri

Скачать datashit 10A05…10

На наш взгляд, лучшим вариантом выпрямителя будет применение импортных диодных сборок, например, типа KBU-RS 10/15/25/35 A, они и токи большие выдерживают, и места занимают гораздо меньше.

Диодная сборка KBU8M

Параметры можете скачать по прямой ссылке:

16-KBU-RS_10A_15A_25A_35A.RAR

● Транзистор Т1 - может слегка нагреваться, поэтому лучше его установить на небольшой радиатор или пластину из алюминия.

● Транзистор Т4 - однозначно будет нагреваться, поэтому ему нужен хороший радиатор. Это связано с мощностью, рассеиваемой на этом транзисторе. Приведем пример: на коллекторе транзистора Т4 имеем 30 Вольт, на выходе БП установили 12 Вольт, а ток при этом течет 5 Ампер. Получается, что 18 Вольт остается на транзисторе, а 18 Вольт умноженное на 5 Ампер получим 90 Ватт, это та мощность которая будет рассеиваться на транзисторе Т4. И чем меньшее напряжение вы установите на выходе БП, тем мощность рассеивания будет больше. Отсюда следует то, что транзистор следует выбирать внимательно, и обращать внимание на его характеристики. Ниже находятся две прямые ссылки на транзисторы КТ819 и 2N3055, можете скачать их себе на компьютер:

2N3055_datashit.RAR

КТ819_datashit.rar

Регулировка тока ограничения.

Включаем блок питания, регулятором выходного напряжения устанавливаем 5 Вольт на выходе в холостом режиме, подключаем к выходу резистор 1 Ом мощностью не менее 5 Ватт с последовательно подключенным амперметром.С помощью подстроечного резистора R8 устанавливаем необходимый ток ограничения, и чтобы убедиться, что ограничение работает, вращаем регулятор уровня выходного напряжения вплоть до крайнего положения, то есть до максимума, при этом величина выходного тока должна быть неизменной. Если вам не нужно изменять ток ограничения, тогда вместо резистора R8 установите перемычку между эмиттером Т4 и базой Т5, и тогда при номинале резистора R6 0,39 Ом ограничение тока будет происходить при токе 3 Ампера.

Как увеличить максимальный ток БП.

● Применение трансформатора соответствующей мощности, способного длительно отдавать требуемый ток в нагрузку.● Применение диодов или диодных сборок, способных длительно выдерживать требуемый ток.

● Применение параллельного соединения регулирующих транзисторов (Т4). Схема параллельного включения ниже:

Параллельное соединение транзисторов_схема

Мощность резисторов Rш1 и Rш2 не менее 5 Ватт. Транзисторы оба устанавливаются на радиатор, компьютерный вентилятор на обдув лишним не будет.● Увеличение номиналов емкостей С1, С2, С4. (Если применять БП для заряда автомобильных аккумуляторов, этот пункт не критичен)● Дорожки печатной платы, по которым будут течь большие токи, залудить оловом потолще, или поверх дорожек напаять дополнительный провод их утолщающий.● Применение толстых соединительных проводов по линиям больших токов.

Внешний вид собранной платы блока питания:

Плата БП в сборе

www.komitart.ru

vip-cxema.org - Лабораторный блок питания 0-24В 5А

После того, как из строя вышел мой очередной блок питания, было решено в его корпусе собрать более мощный лабораторный блок.  Требования к новому блоку были такие.  Регулировка выходного напряжения от 0 до 24-х Вольт.  Отдаваемый ток до 5Ампер Защита от перегруза и КЗ Ограничение по току.  После этого я собрал ряд схем блоков питания и поочередно напишу статьи про эти схемы, а сейчас мы рассмотрим самую первую схему которую собрал буквально за 20 минут. Хочу сразу заметить, что эта схема не соответствует указанным нормам, но как вариант простого блока питания, пожалуй рассмотрим. 

Схема довольно проста и содержит силовой транзистор для регулировки, верхний диапазон выходного напряжения определяется по номиналу (напряжению стабилизации) использованного стабилитрона, в моем случае стабилитрон на 15 Вольт. 

При желании силовой ключ можно заменить на более мощный, в моем случае был использован транзистор типа 2N3055, мощность рассеяния 115 ватт (он остался у меня еще с первого блока питания. 

Если нет нужного стабилитрона, то можно использовать два последовательно подключенных, для получения нужного напряжения стабилизации.  Электролит на 100мкФ (параллельно стабилитрону)  нужен для того, чтобы последний не шумел. 

Регулирующий транзистор обязательно устанавливаем на теплоотвод, в ходе работы через него проходит ток до 3-х Ампер, поэтому будет довольно сильно перегреваться.  Диодный мост - подбираем только с учетом допустимого тока, лучше взять с запасом на пару Ампер, в итоге мост должен быть рассчитан на ток не менее 3-х Ампер. При этом можно использовать как сборку из 4-х диодов, так и готовый диодный мост, которым можно снять из компьютерных блоков питания.  Диоды Д226 можно заменить на любые штатные выпрямители с током не менее 1А.  Переменный резистор может иметь номинал от 1кОм до 22кОм. 

Выходное напряжение регулируется плавно, нижняя грань - 0, это довольно хорошо, поскольку у многих блоков питания эта грань 0,8-1.5 Вольт.  Трансформатор должен отдавать выходное напряжение на 3-5 Вольт выше, чем расчетное напряжение на выходе нашего блока, к примеру, если ожидаете получить 15 Вольт на выходе, то трансформатор нужен с напряжением 18-22 Вольт.  Пожалуй, 3А - это максимум, что можно получить с такой схемы, схема не имеет защиту от КЗ и перегруза, также нет возможности ограничивать ток, а так блок довольно хороший, можно использовать для радиолюбительских нужд. 

С уважением - АКА КАСЬЯН

vip-cxema.org


Смотрите также